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1. Problem Statement 

In this project, a semantic search engine specific to the law domain will be developed. 

In this search engine, unlike the classical search engine methods, by using Machine 

Learning and Natural Language Processing methods, it is aimed to show the end user 

not only the documents containing the searched word or sentence, but also the 

documents containing the words or sentences that are semantically close to this query, 

as a result, via an interface. 

2. Problem Description and Motivation 

We live in the information age, and by means of development of technology, most of 

this information is available on the internet in a digital way and people use this 

information to facilitate their work and daily lives, but the presence of too much digital 

data causes some problems. The most important of these problems is the difficulty in 

reaching the right information that people are looking for, so companies like Google 

have developed search engine algorithms and software to help people reach the 

information they are looking for in the fastest and most accurate way. 

Large companies such as Google develop general purpose search engines, but some 

businesses require domain specific search engines since general purpose search 

engines may not work as effectively as specialized search engines for domain specific 

queries. The law domain is also one of the fields that needs a domain specific search 

engine because people working in the law domain use this domain specific search 

engines to find precedents and relevant law articles in the legislation to refer to when 

writing their legal petitions. 

These search engines may significantly reduce the time that lawyers spend on 

researching. Although these search engines are used very often, they share a common 

problem which is that search engines do a word-based search in the law domain, so 

they only return law texts containing the searched words or phrases, therefore, users 

may not find the information they are looking for in the first place. So that lawyers and 

clerks may have to go to great lengths to find relevant precedents or legislation in 
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search results that are truly relevant to their cases. Also, legislation search and leading 

case search serve as separate search engines, that situation doubling the time spent. 

Our solution to that problem is to combine these two search engines into one, to get 

the final search result. Our project is to produce a solution to this problem with the 

help of natural language processing techniques, text mining techniques, big data 

solutions and machine learning algorithms.  

3. Main Goal and Objectives 

Since the current law-specific search engines [1] perform word-based searches instead 

of semantic searches, results that are not semantically close to the searched query may 

also return among the returned results. In order for the user to reach the desired 

information from these results, it is necessary to examine all the incoming texts, which 

leads to a waste of time and resources. Our goal is to develop a semantic search engine 

and show results related to the desired information, thus shortening the time it takes 

to reach this information. 

Our objectives as follows: 

i. Collecting of documents specific to the law domain. These documents can be 

divided into sub-branches as Supreme Court decisions, constitutional court 

decisions and legislation. 

ii. Cleaning and parsing the collected data so that it can be used in machine 

learning models and transferred to the search engine database. 

iii. Developing machine learning models that extract the semantic properties of 

words and their numerical equivalent vectors using the data we have. In this 

part, different machine learning and deep learning models will be tested.  

iv. Extracting vectors that represent the semantic properties of the data we have 

in order to perform semantic search. 

v. Indexing the documents we have and the extracted vectors in the search 

engine. 

vi. Implementation of algorithms required for semantic search and creation of 

semantic search pipeline for the entered query 

vii. Make the search engine available to the end user via web based user interface. 
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4. Related Work 

● Bert and fasttext embeddings for automatic detection of toxic speech [2] 

In this study, different word embedding models such as fasttext and BERT are 

compared for hate speech detection. In the scope of the project, BERT model is fine-

tuned and compared with pre-trained models. As a conclusion of this study, both 

fasttext and BERT model's word representation perform very close. Also, fine-tuned 

BERT model for the study performed a little better than the pre-trained models. 

 

 

● A Word Embedding Model for Medical and Health Applications in the Arabic 

Language [3] 

The study focuses on building a word embedding model for Arabic language in the 

medical domain. Three commonly used models which are fastText, GloVe and 

Word2Vec are pre-trained as a part of the study with the dataset which contains 

around 1.5 million documents. To evaluate the performance of the models, different 

approaches were applied. As a result of the study, fastText performed better than 

other word embedding models. 

 

● Comparing apache solr and elasticsearch search servers [4] 

The study includes a comparison of different search engines which are Solr and 

Elasticsearch. The Importance of the search engines and document indexing are 

mentioned in the study. Since the platforms offer different advantages, using one of 

these platforms for document indexing is a reasonable decision. As a conclusion, 

although both platforms perform very well, it concluded that Elasticsearch has better 

advantages. 

 

● Comparative study of semantic and keyword based search engines [5] 

In this article, semantic and keyword search engines were compared and the important 

differences between them were examined. Then, semantic search engines names, the 

technologies used and the pros and cons of these technologies are mentioned. The 

study stated that while keyword search engines are unable to locate precise and 
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accurate information for user queries because it depends on the syntax of the 

keywords and page rank algorithms, semantic search engines are able to resolve this 

issue by looking at the meaning of the keywords. 

 

● A vector space search engine for web services [6] 

This study focuses on utilizing a search mechanism known as The Vector Space Model 

which is mainly used for search engines, based on natural language. The size of the 

keywords in the vector space and the position of these vectors to other vectors and 

their similarity to each other were examined. 

5. Scope 

Our scope is developing an NLP based semantic search engine on the scope of Turkish 

Supreme Court Jurisprudence and legislation documents. As law decisions and 

judgements may vary from country to country, only Turkish Law will be covered, hence 

the search engine is only for queries in Turkish language. In search engines, typo and 

spelling are frequently seen. The search engine to be developed within the scope of 

the project will return results according to the incorrectly entered query even if there 

is a typo error in the entered query. No improvement will be made to detect and 

correct this error, so it is the user's responsibility to enter the correct query. In order 

to test the functionality of the search engine, a certain number of jurisprudence and 

legislation will be downloaded for use. Afterwards, the search engine will be developed 

with this data and no new data will be added to the database. The performance metric 

in the search engine will mainly be accuracy, not speed. After the models are trained, 

an optimal number will be determined for the search results, and this number of 

results will be returned in the search queries. then these results will be sorted by their 

cosine similarity, so there will be no options such as the number of results returned 

and the sort option. Also, there will not be any saving or printing option for results. 

A. Limitations 

● Since understanding the law language and being able to comment on the law 

language requires a bachelor’s degree, it is difficult for non-law professionals 

to determine whether the search results are relevant to the entered query. 
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● Within the scope of the project, it may be necessary to consult law domain 

experts, but it may not be easy to reach these people whenever needed. 

● Due to memory limitations, around 100000 of jurisprudence will be used out of 

more than 7 million jurisprudence shared by the Supreme Court.  

● Training large language models requires specific and sufficient hardware, so 

models will be trained by fine-tune or minor pretraining. 

B. Assumptions 

● It will be assumed that the data will be crawled from the Supreme Court's 

website. 

● It will be assumed that people who will use the search engine know the Turkish 

language. 

6. Methodology and Technical Approach 

In this Project we are going to develop a semantic search engine based on Turkish 

jurisprudence of the supreme court data and legislation data. This project gathers 

technologies from different fields under one roof so that it consists of several steps to 

accomplish. The methodology of this project can be summarized with the figure below, 

these steps will be explained in detail in order 

 

6.1 Data Collection 
In this step we are going to crawl Turkish jurisprudence of the supreme court and 

Turkish legislation documents from the official search engine of Turkish Supreme Court 

[1] and official Turkish regulatory database [7] with the help of Python’s request [8], 

beautifulsoup [9], selenium [10] libraries. Selenium is a open-source umbrella Project 
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that enables browser automation with Python, with the help of selenium first we open 

supreme court website and we will pass “dava” keyword as query because after a little 

glance we make sure that “dava” keyword occurs in every document, then we filter 

chamber number so that we can make sure that we will collect enough data from each 

chamber of the supreme court to balance our dataset. After clicking the search button, 

with the request library we will get the raw html text of the result page and parse it to 

collect all document data with beautifulsoup. This search engine has a result limit 

which is 1000 documents found in 100 pages so we will move these result pages with 

selenium and repeat this process until collecting all documents. We will follow a similar 

path, using the same libraries and methodologies to download regulatory data. 

 

6.2  Data Preprocessing 
 

Our jurisprudence documents consist of subsections such as chamber type, document 

number, date etc. In this project, Elasticsearch [11] planned to be used as a database 

and it accepts documents in JavaScript Object Notation (JSON) [12] format. In this 

subtask, documents will be converted into JSON format with the appropriate 

subsections. To extract these fields from raw text documents, Regular Expressions [13] 

is planned to be used because these fields follow some patterns and it can be extracted 

using python’s re [14] library. laws in legislation contain multiple clauses, these clauses 

also will be splitted and converted into JSON format using the same methodology.  

 

6.3  Elasticsearch Indexing 

 

Elasticsearch is a distributed architecture open source project which is written entirely 

in Java [15] language. Elasticsearch is based on the search software Apache Lucene 

project that aims to shorten the search process on long unstructured text documents. 

Elasticsearch performs search operations over structured texts which is JSON format. 

The most important feature of Elasticsearch is that it returns query results quickly 

because it indexes which document a word is in while saving data to its database. This 

saving mechanism is called inverted index; it can be easily understandable with Figure 

[1] below. 
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Figure [1] : A illustration of  inverted index on sample data, figure taken from  [16]  

 

Elasticsearch will be used in this project because of its capabilities in the searching 

process. To use it, JSON documents that are created after data preprocessing will be 

indexed to Elasticsearch search engine database. A group of related documents is 

referred to as an Elasticsearch index, in the scope of this Project there will be two 

indices which are jurisprudence and legislation indices. In each document there are 

some fields “keys in JSON” and corresponding values for these values. In order to save 

each document to related Elasticsearch index mappings needed to be done correctly. 

Mapping is defining which field accepts what type of data.  In Elasticsearch there are 

strings, numbers, Booleans, dates, arrays of values, geolocations, or other types of 

data, in this project although, string data type mainly used, date will be also used in 

mappings. After setting all these mappings, all of jurisprudence and legislation 

documents will be indexed accordingly with the Elasticsearch Python client [17]. 

 

6.4  TF-IDF 
TF-IDF is a way of representing mathematical relationships between words and 

documents which is used in a variety of tasks. Elasticsearch uses this TF-IDF algorithm 



10 
 

for searching a given query into an index. In this project the TF-IDF method will not be 

used directly as a search algorithm but in the developing process it will be a good guide 

to compare with semantic search results. Also for our project the tf-idf algorithm can 

be used on filtering documents according to the user's desires. For example if a user 

wanted to get semantically relevant documents that do not contain specific words, this 

filtering will be applied on documents using tf-idf so that semantic search will be 

limited to these filtered documents. [18] 

 

TF in the TF-IDF stands for “Term Frequency” and it is calculated as counting the 

appearance of words in a document. And its formula as below: 

    (1) 

IDF stands for “Inverse Document Frequency” and it is a calculation of how frequent 

or uncommon a word is over the full corpus of documents. And its formula below: 

    (2) 

TF-IDF is multiplication of these two TF and IDF values, if this value close to 0 it does 

not valuable for searching documents but if this value close to 1 that has a valuable 

meaning which is high term frequency (in the supplied document) and a low document 

frequency of the term in the entire collection of documents. Elasticsearch makes these 

calculations while indexing documents. And TF-IDF formula as below: 

    (3) 

6.5  Word Embedding 
 

Main goal of this project is developing a semantic search engine, to develop such a 

system cosine similarity plays an important role. Cosine similarity will be explained in 

more detail later on but for now, to understand the importance of word embedding, 

it is briefly called as the dot product of two vectors divided by the norms of these 

vectors. [19] As it can be understood from the definition, vectors are needed to 
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calculate the similarity score. for this reason researchers in the NLP domain tried to 

find a way to represent words or sentences in n-dimensional vector for their tasks 

because if they can extract the meaning of a word with numbers they can apply 

mathematical methods to measure how similar is given two words so that they come 

up with a Word Embeddings. Word Embedding is a vectorial representation of the 

word that is extracted from unsupervised machine learning models. [20] These 

unsupervised models take a large corpus as an input and analyze the probability of a 

word being found among certain words by iterating through a dataset. There are two 

unsupervised machine learning models that we will use in this project for the word 

embeddings which are fastText and BERT.   

 

6.6  Corpus Creation 
 

To train unsupervised vector extraction models such as fastText and general language 

models such as BERT, a large corpus containing GB’s of text data needed. For example, 

dbmdz/bert-base-turkish-cased  which is general purpose language model can be 

found on huggingface’s model hub was trained on 35GB of turkish text corpus [21] and 

pretrained Turkish fastText model trained with the all website content in turkish 

language [22] which is also very large corpus. In order to train these unsupervised 

machine learning models, Turkish Law corpus that contains turkish law related text 

documents needed to be collected. To accomplish this step we are planning to collect 

academic resources in Turkish Law domain such as master's thesis, doctoral thesis, 

journal publications, books. At the same time European Court of Human Rights 

judgements, constitutional court judgements and lawyers' legal blogs will be collected 

using python’s requests, beautifulSoup and selenium libraries via using the same 

methodology mentioned in the data collecting part. 

 

6.7  Pre-training Fasttext Model 
 

fastText is a library developed by Facebook's AI Research (FAIR) team for word 

embedding and text classification learning. [23] fastText has Python binding, in this 

project fastText will be used with Python programming language. fastText has a 
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train_unsupervised function for training an unsupervised machine learning model that 

will be used for word embeddings. This function takes corpus as an input and returns 

model as an output. Although whole machine learning complexity abstracted from 

user this function has 17 parameters that can affect models performance. So that in 

this part, in addition to academic studies and similar works, we will try to create the 

most suitable model by playing with the parameters. These parameters are listed 

below. [24] 

 

train_unsupervised parameters 
 

input # training file path (required)  

model 

# unsupervised fasttext model {cbow, skipgram} 

[skipgram] 
 

lr # learning rate [0.05]  

dim # size of the word vectors [100]  

ws # size of context windows [5]  

epoch # number of epochs [5]  

minCount # minimal number of word occurences [5]  

minn # min length of char ngram [3]  

maxn # max length of char ngram [6]  

neg # number of negatives sampled [5]  

wordNgrams # max length of word ngram [1]  

loss # loss function {ns, hs, softmax, ova} [ns]  

bucket # number of buckets [2000000]  

thread # number of threads [number of cpus]  

lrUpdateRate # change the rate of updates for the learning rate [100]  

t # sampling threshold [0.0001]  

verbose # verbose [2]  
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Input parameter will be the corpus that mentioned in part 6.6. There are two model 

parameter options for computing word representations which are skipgram and 

Continous Bag of Words (cbow). By using a word that is close by, the skipgram model 

can learn to anticipate a target word. The cbow model, on the other hand, makes 

predictions about the target word based on the context. The words in the target word's 

fixed-size window that make up the context are shown as a bag. [20] This difference 

can be illustrated by the Figure [2] below. 

 

Figure [2]: Illustration of difference between CBoW and Skipgram. Figure taken from 

[25]  

 

Default values will be used on the other parameters initially by playing with the values, 

the most suitable parameters will be found later on.  

 

6.8  Pre-training BERT Model 
 

Bidirectional Encoder Representations from Transformers, shortly BERT, is a brand-

new language representation paradigm that is frequently used in Natural Language 

Processing tasks in recent years. By concurrently conditioning on both left and right 

context in all layers, BERT is intended to pretrain deep bidirectional representations 

from unlabeled text without making significant task-specific architecture alterations, 

the pre-trained BERT model may be improved with just one additional output layer to 

produce cutting-edge models for a variety of tasks, including question answering and 
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language inference. [26] Since this BERT architecture conditioning full context, unlike 

fastText which is word-based architecture, in this project domain specific pretrained 

BERT model performance on word embeddings and semantic search will be compared 

to fastText. There is no available pretrained BERT model on Turkish Law domain in 

Hugging Face model hub [27] so in this part BERT model on this domain will be trained. 

To train this model the same corpus created for the fasttext model will be used. 

Hugging Face is open source AI by offering a single location for materials such as 

models, datasets, ML demos and libraries. [28] One of their libraries is Transformers 

which help end users to pretrain, fine-tune and use big language models such as BERT. 

In this project, to train Turkish Law domain specific BERT model, Transformers library 

[29] will be used. run_mlm.py Python file handle training with the parameters below.  

 

python run_mlm.py  
 

model name or path roberta base  

train file path to train file  

validation file path to validation file  

per device train batch size [8]  

per device eval batch size [8]  

do train  

do eval  

output dir /tmp/test mlm      

 

Model name parameters will be bert-base-cased, Corpus will be given as train_file and 

other parameters will be adjusted according to hardware limitations. 

 

6.9  Comparison of Model Performances 
 

In this part, comparison of four different vector extraction models will be handled. 

These four models can be listed as below. 

● fastText pretrained Turkish Common Crawl model. 
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● Turkish Law fastText model which will be trained in the scope of this project. 

● dbmdz/bert-base-turkish-cased Pretrained general purpose BERT model for 

Turkish Language. 

● Turkish Law BERT model which will be trained in the scope of this project. 

First pretrained Turkish fastText model and Turkish Law fastText comparison, then 

pretrained Turkish BERT and Turkish Law Bert model comparison will be handled. Then 

the winner of each comparison will be compared to each other, so that final model will 

be used to extract word embeddings of documents. 

 

6.9.1 Comparison of Pretrained Turkish Fasttext Model and Turkish Law 

Fasttext Model 
 

In this part the test set will be prepared for comparison. In this dataset there will 

be word pairs related to Turkish law in a way that each pair words should be 

semantically close, although they are not very similar in character to each other. In 

this part, help from domain experts might be necessary. After the test set is ready 

we will compare the cosine similarity of each pair and take the average of cosine 

similarities of the whole set. Model which has a higher average cosine similarity 

score will be chosen for the final comparison. 

 

6.9.2 Comparison of Pretrained Turkish BERT Model and Turkish Law BERT 

Model 
 

In this part the test set will be different than the previous part because since BERT 

takes inputs as tokens and processes them as a whole, vectors will be extracted 

from this whole context. This time instead of word pairs there will be paragraph 

pairs that are semantically close with few common words will be created with the 

help of domain experts. Once the test set is prepared, we will compare each pair's 

cosine similarity and take the average of the cosine similarities across the board. 

The model used in the final comparison will be the one with the highest average 

cosine similarity score. 
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6.9.3 Comparison of fastText Model and BERT Model 
 

In this part comparison of winner models of part 6.9.1 and 6.9.2 will be handled. In 

this part paragraph pairs will be used as a test set and this time while extracting 

vectors with fastText we will use fastText’s get_sent_vector function which 

extracts each word’s vector in the sentence and takes the average of them. On the 

result of that comparison, the model that will be used in the semantic search is 

determined with the highest average cosine similarity score. 

 

6.10 Vector Extraction 
 

In this part by using the model that was determined after the comparison on the part 

6.9, document vectors will be extracted from all of the jurisprudence of the supreme 

court documents that have been collected in the scope of this project. For this vector 

extraction part, depending on the type of model to be used, two different problems 

may be encountered. If fastText model will be used, since fastText extract vectors word 

by word, it will also extract the vectors of words that repeat too much in the text and 

do not add anything to the text semantically, but only connect the words such as 

''and'', ''or'' etc. in English. These words may lead our document vectors to lose their 

semantic features so that stopwords list that contains repetitive and meaningless 

words in Turkish Law domain may be extracted and while extracting document vectors 

these words can be skipped. If BERT model will be used for vector extraction task, input 

tokens must be less than or equal to 512 to be able to give it to the BERT model but 

documents will be used in this project generally have much more than 512 token so 

that to handle this problem input document may divided into several 512 tokens 

batches and extract the vector of each batch separately and applying semantic search 

on these batches separately. After handling these problems, all document embeddings 

will be extracted and saved as a new field on json documents. 
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6.11 Indexing Vectors 
After extracting vectors, they needed to be indexed to the Elasticsearch database to 

apply semantic search on documents. To index vectors, Elasticsearch index mappings 

have to be adjusted according to this as shown in the Figure[3].  

   

Figure [3]: Elasticsearch index mapping sample on vector indexing. Figure taken from 

[30]  

 

For the vector field type should be dense_vector which is Elasticsearch data type for 

storing numeric values or vectors, dims parameter should be vector dimension that 

will be extracted. index parameters should be true for calculating similarity on it. 

Similarity parameter determines which method to use when calculating distance 

between two vectors. There are three different options that Elasticsearch allows users 

for calculating vector distances which are l2_norm, dot_product and cosine. [30] 

6.12 Semantic Search 

In this part semantic search pipeline will be applied. Pipeline will take a query as an 

input and preprocess that input then extract the query vector. And this query vector 

will be input of the Elasticsearch knn_search function. knn_search function searches 

for the k closest vectors to a query vector in the indexed document vectors, as 

calculated by a similarity metric that is determined on the Elasticsearch vector indexing 
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which is dot_product in the scope of this project. Sample K-nearest neighbors (kNN) 

search can be done with Elasticsearch API in the Figure [4]. 

 

Figure [4]: Elasticsearch kNN search example. Figure taken from [31]  

Field parameter determines which field on our index, vector search will be applied, 

query_vector parameter will be vectorized input query taken from user, k parameter 

determines how many semantically relevant document should return as an output and 

finally num_candidates determines number of potential closest neighbors on each 

shard. After performing this search, up to k documents will be returned to the user.  

[31]  To perform this search two techniques will be used mainly which are Cosine 

Similarity and KNN. These techniques will be explained in the following parts in detail. 

6.12.1  Cosine Similarity 
 

Although dot_product will be given as a similarity parameter when indexing vectors to 

Elasticsearch database, it is an optimized version of Cosine Similarity so that Cosine 

Similarity and its difference between dot_product will be explained briefly in this part. 

Since word vectors are represented in n dimensional vector space, cosine similarity is 

a calculation used to determine how similar two vectors are by multiplying their cosine 

angles in this n dimensional vector space. If the two vectors are close to each other 
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their cosine similarity value will approach to 1 otherwise value will approach to 0. [32] 

This value can be calculated with the formula in the Figure [5]. 

 

Figure 5: Cosine similarity formula. Figure taken from [32] 

This value is obtained by the dot product of two vectors divided by length 

multiplications of these two vectors. 

As can seen in the formula above, dot product of two vectors is already calculated and 

while indexing documents to Elasticsearch database, vectors should be converted to 

unit vectors to use dot_product similarity parameter. This conversion takes an n-

dimensional vector into one floating number and that is a kind of summary of that 

vector so that the divisor part in the cosine similarity formula will not be used in this 

calculation and that makes the calculation process faster than cosine similarity. 

6.12.2  kNN 
 

K-nearest neighbor (kNN) search is applied to a vector which finds the k nearest 

neighbors in terms of similarity. The kNN will be applied to the search query vector and 

the  document vectors for finding the most relevant k documents. There are two 

methods for kNN search that Elasticsearch supports which are script_score and kNN 

which is Approximate kNN. Approximate kNN will be used for the law domain specific 

search engine.  The kNN searches for closest vector points on the document space 

where the center of the space is the search query vector. The searching on the space 

stops when it reaches the k document, which means the speed of the process is related 

with the similarity of the search query vector and the k. [33] K is 10 as default on the 

Elasticsearch, for our project it will be determined after the measurement of the 

average related document number.  
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6.13 User Interface 
 

Users need a system to interact with the website they are using. Usually this 

interaction is handled on the User Interface which includes display, mouse and 

keyboard actions. User interface is crucial for a website since all the interaction 

between system and user is handled here. A complex design may make usability of the 

website difficult where a user friendly design makes things easier. In the project, users 

will interact with the search engine using a user-interface. To implement the user-

interface HTML and CSS will be used with the Flask API.  

  

6.13.1  Flask API 
 

Flask is a web framework which is used for creating Application Programming 

Interfaces (API) using Python. [34] APIs are used for the communication between the 

server and the web site. For the project, API will be used for reaching related 

documents on the search engine and it will be served to the website. Also, search 

queries will be sent to the Elasticsearch using Flask API. Flask API can be created in 

Python using Flask Library. Moreover, Flask can render HTML and CSS files which allows 

a connection between the website and the Restful API. The API will work as shown in 

the figure below 
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7. Professional Considerations 

7.1  Methodological Considerations 

 

Python: Python will be used as a programming language for almost every task during 

the development process of the project. For web crawling Python’s request, 

beautifulSoup and Selenium libraries will be used. The data processing in all steps will 

be done using the “re” library. For building machine learning models, we will use a 

variety of Python libraries including NLTK [35], pytorch [36], scikit-learn [37] etc. For 

deploying our project, the necessary API will be written using Flask on Python. 

Github: Version control is one of the most important aspects of programming projects. 

We are planning to use Github as the version control system. [38] 

Elasticsearch: Elasticsearch will be used as a database but also its other beneficial 

features such as vector searching and TF-IDF searching will be used. It is decided to use 

Elasticsearch since it is fast and reliable [4]. 

HTML/CSS: Interface of the project will be done using HTML and CSS. We are planning 

to have a user-friendly interface that users can easily manage using and understanding 

of the project.  

7.2  Realistic Constrains 

7.2.1 Economic 

We believe that our project is profitable since it has thousands of potential users. Since 

the law practitioners spend too much time on the research they would be willing to 

pay for a product that helps them to save lots of time. 

There is a similar product in the market which has been published lately. De Jure which 

cost user 6.500₺/Annually. [39] Our product’s price may differ accordingly to its 

performance and the maintenance costs.  

There would be a cost of running a website beside developing a better search engine. 

Also, there would be the cost of advertisement, customer representative addition to 

the development costs. 
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7.2.2 Environmental 

Since our project will be developed and served as online there will not be any 

environmental pollution or anything that discomforts any living creature.  

7.2.3 Ethical 

The project’s target users are Law practitioners who are expected to search for 

precedent on it. The practitioner may be misled if the search engine returns irrelevant 

or incorrect documents, which is unethical. 

7.2.4 Health and Safety 

Since the project will be a web-based search engine it will not have a physical effect on 

the users. Also, project will consist only documents on the domain of law so there will 

not be any sexual or violent content. 

Project is safe in terms of both physical and mental aspects. 

7.2.5 Sustainability 

The Law has been applied for thousands of years. It evolves, it changes but the 

existence of law will last forever. As long as law exists, law practitioners need to search 

for precedent. In this case our product may survive as long as it is preferable. 

7.2.6 Social 

Project does not have any side effects on anyone, instead it may have good effects on 

target users. Since it is a domain specific product, people outside of the domain will 

not be interested at all. 

7.3 Legal Considerations 

Since the search engine that is being developed will consist of thousands of documents, 

copyright may be considered as legal considerations on this project. The search engine 

will have jurisprudence and legislations as documents. Turkish Supreme Court 

publishes jurisprudences on its website [1] so all the documents that will be used on 

the search engine are public. Since all the documents are public, copyright cannot be 

issued on the project. Therefore, project does not have any legal considerations. 
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8. Management Plan 

A. Description of All Tasks 
 

1. Data Collecting:  
I. The jurisprudence of the Supreme Court will be downloaded from the website 

of the Supreme Court [1]. In order to keep the jurisprudence of the Supreme 

Court up to date, approximately 200,000 documents will be downloaded from 

2021 on. 

II. All documents related to the legislation will be downloaded from the Turkish 

regulatory database[2].  

 

2. Data Cleaning:  
This task contains multiple subtasks as follows: 

I. Parsing Supreme Court Jurisprudence: The Supreme Court Jurisprudence 

consists of fields such as base no, decision no, date of decision, court, type of 

crime, jurisprudence text, department number. It is aimed to extract these 

fields from the raw document with the help of regex and save them in JSON 

format. 

II. Parsing Legislation: Legislation consists of laws, laws consist of clauses, and 

clauses consist of sub-clauses. It is aimed to separate them from each other 

with the help of regex. 

III. Stop-Word Extraction: This subtask is for calculating frequency of each word in 

the documents. It is aimed to create a stop-word list specific to the law domain 

by identifying the words that are specific to the law domain but do not make 

any sense. 

IV. Conversion of data into suitable format for model training: Besides indexing, 

this data will also be used for model training. For this reason, it is necessary to 

convert the data into a format suitable for model training. 

 

3. Building Machine Learning Models for Vectorizing:  
I. It is aimed to train Turkish Law domain specific fastText models. 

II. It is aimed to train Fine-Tuning BERT sentence transformer models. 
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4. Data Vectorizing for Semantic Search 
I. By using the Turkish fastText model, jurisprudence vectors will be extracted. 

II. The jurisprudence vectors will be extracted using the fastText model that we 

will train. 

III. By using the Turkish BERT model, jurisprudence vectors will be extracted. 

IV. The jurisprudence vectors will be extracted using the BERT model that we will 

train. 

V. The performances of the vectors extracted above will be compared on the 

semantic search and the final vector will be decided as a result of these 

comparisons. 

 

5. Indexing Data on Search Engine 
I. All of the fields specified in clause 2 will be indexed in ElasticSearch. In this way, 

it will be possible to filter the results to be returned in the search. 

II. The vectors determined in sub clause 5 of clause 4 will be indexed to match 

each jurisprudence. 

 

6. Interface 
I. It will develop a user friendly Application Program Interface  for abstracting all 

calculations and the complexity of the search operation from the user. API will 

accept input and output as JSON format. 

II. The draft of the website will be created using an interface design program. 

III. The website will be implemented according to the draft.  

IV. An API connection will be linked to the website. 

 

B. Division of Responsibilities 
 

  1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 4.3 4.4 4.5 5.1 5.2 6.1 6.2 6.3 6.4 

Fatih Satı                                       

Mehmet Selman Baysan                                       

Merve Hazal Özalp                                       
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C. Timeline With Milestones 
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9. Success Factors and Risk Management 

A. Measurability/Measuring Success: 

i. Success Factor for Objective 1:  
Approx. 200000 up-to-date Supreme Court jurisprudence, constitutional court 

decisions and downloading all legislation. The downloaded jurisprudence are 

composed of texts that contain the reasoned decisions of the Supreme Court. 

ii. Success Factor for Objective 2:  
The documents should not contain word errors and spelling mistakes, all documents 

should be in the same format, the jurisprudence should be parsed under some 

headings and the legislation should be indexed as clauses. 

iii. Success Factor for Objective 3:  
Since the Machine Learning models that are used for vectorizing are trained 

unsupervised, they do not have a performance metric as f1-score or accuracy. For 

this reason, performance metric of the machine learning models that will be trained 

in the scope of the project is decided as the higher cosine similarity of the two 

synonym words than the pretrained machine learning models such as fastText and 

BERT. 

iv. Success Factor for Objective 4:  
Extraction of both fastText and Bert vectors of jurisprudence texts and matching 

them with the relevant document. 

v. Success Factor for Objective 5:  
Transferring the supreme court jurisprudence with all its fields to the search engine 

as a table, transferring fastText and Bert vectors to the database as separate tables 

by matching the document id-vector. Transfer of all legislation parsed into clauses 

to the search engine as a separate table. 

vi. Success Factor for Objective 6: 
The first three results should be directly relevant in eight out of ten search queries 

entered under the guidance of a law expert. 

vii. Success Factor for Objective 7:  
The developed interface should be bug-free, user-friendly, have a filtering feature 

and it should work successfully. 
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B. Risk Management: 

● Data Collecting – Supreme Court jurisprudences are publicly available at the 

Supreme Court’s website which is planned to be used to reach the data. If the 

Supreme Court abandons publishing the jurisprudences, the data may be requested 

directly from the Supreme Court.  

● Data Indexing – It is planned to use Elasticsearch as the search engine which is open-

source and free of charge. If Elasticsearch charges for the usage of the application, 

the search engine for the project might be changed to Apache Solr. 

● Model Training – Since the training of the language models requires huge amounts 

of data, it is possible that the dataset used for training might be deficient. In this 

case, the dataset can be enriched with other law documents. 

● Search Engine – Results from the search queries may take longer to return than 

traditional search engines since semantic search requires more complex algorithms 

than traditional algorithms. To solve this problem, a few features  of the search 

engine which are not critical for the results may be removed to speed up the 

process. 

10. Benefits and Impact of the Project 

Benefits/Implications:  
Lawyers may spend too much time while researching the precedent that they will 

cite, which causes them to lose a lot of time.  Our project is aiming to reduce the 

time that is spent on researching which will permit them to use their time more 

efficiently. Academics and students will be able to use our search engine as a guide 

while searching for practical applications of law. 

1. Scientific Impact: 
 As vector extraction models for the search engine Turkish fastText and Turkish 

BERT models will be used initially. Afterwards, a law-specific corpus will be created 

and Turkish Law fastText and BERT models will be trained with this corpus, and 

their performance comparisons will be made. Depending on the performance of 

the domain-specific models we have trained in the Turkish field, these studies may 

be a base model for future studies in the field of law. At the same time, our project 
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can lead to studies in other domains for Turkish. As a result of the reasons 

mentioned above, academic publications may be issued. 

2. Economic/Commercial/Social Impact:  
The output of our project is expected to be a prototype. With this study, it is aimed 

to increase the life quality of law practitioners and to reduce their energy and time 

use. On the education side, students and academics can use this search engine to 

use their time more efficiently in their research. 

3. Potential Impact on New Projects:  
The semantic search engine that will be developed in the law domain can be 

pioneering the search engines that will be developed in other domains. 
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