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Introduction

e Given a video of human actions, automatically recognize

the action.
o \/ideo frames

o Human poses

o Depth maps

Comparison of Deep Learning Architectures for
Human Action Recognition from Videos

e (Comparison of 3 different approaches.
e 2 different data sets: NTU-RGB+D [1] and JHMDB [2].

NTU-RGB+D data set consists of 120 classes:
82 Daily Actions, 12 Medical Actions, 26 Mutual Actions
This data set contains 114,480 videos, 106 subjects,155
different views and 3 camera angles.

Cross-subject and Cross-view evaluations
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Contains 3D joints and 2D Joints with on image coordinates.

e 2D coordinates generated by kinect camera in data set
using rgb frames and depth maps.

e For experiments, we generate 2D joints with OpenPose
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[7] using only RGB frames.

25 body joints from NTU-RGB +D data set

JHMDB data set

e A fully annotated data set
e 2D skeletons are interpreted from RGB video

e 928 clips from HMDB51 [8] comprising 21 categories.
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Methodologies

For medical actions:

Experimental Results

For daily actions:
e Skipped Frame Number:

e First half of video

o 1
o 2

e Last half of video

Medical Actions Results on NTU-RGB
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Total Number of
Parameter

24,157,988
1,809,246
63,540,197
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Model Architecture Comparison

For experimental setup, Nvidia Tesla T4 is used in Google Cloud

Run Time per Video

4.6ms
0.212ms
153ms

77 Action Results on NTU RGB Data Set

e NTU-RGB +D data set

1frame = 2 frame
Accuracy First Half Last Half  skip skip  |[Evaluation
80.42% | 24.47% | 42.90% 64.86% CS
VA-CNN 26.82% | 45.12% 78.01% 70.59% CV
67.85% @ 21.16% | 39.85% 66.92% 64.97% CS
VA-LSTM | 80.86% 2594%  4457% 77.79% |IISHAGN  CV
76.70% 20.8% | 31.34% 64.52% 55.67% (S
DD-NET 83.63% @ 20.19% | 33.71% 66.88% | 57.17% CV
R(2+1)d 70.70% CS
85.28% 72.60% CV

o Skeleton based models (VA-CNN) gives better results for Cross View tests
o Video based model R(2+1)D gives better result for Cross Subject tests

e JHMDB data set

o \/ideo based model R(2+1)D gives better results.
e For real-time application, since every person's pose can be detected
separately, with using pose based methods multiple person’s actions can be
recognized. For single person cases, using R(2+1)d model is better because it
doesn’t need pose estimation so it operates fasters as shown in our test

results.
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