

EYES OF THE TIGER

Furkan Ünal - Harun Büyüktepe - Ahmet Yasin Öztürk

SUPERVISORS:

Assoc. Prof. Dr. M. Borahan Tümer

Prof. Dr. Çiğdem Eroğlu Erdem

INTRODUCTION

 Leaving the keyboard and taking control of the mouse is a time consuming job.

- For disabled people computer usage is impossible when they cannot use their hands freely.
- We designed an eye-gaze and blink controlled system using a webcam environment which will replace the mouse.

MAPPING

Calibrate the system such that estimates the screen coordinate that user stares at. **Calibration** :

Users are asked to stare at 13 different calibration points on the screen for 45 frames. System extracts necessary data to use estimating gaze point.

COMPARISON

Accuracy(Error in Degrees) Formula [1]:

$$A_{dg} = \arctan\left(\frac{A_d}{A_g}\right)$$

[A_{dg}] : The accuracy of the gaze tracking system in angular degree.

u _x ,	u _y]	: Coordir	nates or	n the Screen	
-	L 1		• • •		

[**a**_n, **b**_n] : Polynomial Coefficients

 $u_x = a_0 + a_1g_x + a_2g_y + a_3g_xg_y + a_4g_x^2 + a_5g_y^2$ $u_{y} = b_{0} + b_{1}g_{x} + b_{2}g_{y} + b_{3}g_{x}g_{y} + b_{4}g_{x}^{2} + b_{5}g_{y}^{2}$

[A_d] : Denotes the distance between the estimated and actual gaze point.

 $[A_g]$ Represents the distance between the subject and the screen plane.

Method	Error in Degrees	Extracted Frame #						
Tiger_v1	5.643°	13689						
Tiger_v2	1.898°	15755						
Valenti [4]	2.00°	-						
Cheung and Peng [1]	1.28°	-						
Comparison of Different Methods We trained the Support Vector Regression mo-								
Used Featu	res	Error in Degrees						
HeadT, HeadR, Ga	azeAngle	2.007°						
* Gaze0, Ga	ze1	1.898°						
* EV0. EV	1	1.924°						

MOUSE FUNCTIONALITY

Right Blink Left Blink Look Down Look Up

Mapping with Support Vector Regression: $[T_x, T_y, T_z, R_x, R_y, R_z]$: Head Pose $[G_x, G_y]$: Gaze Angle [E_x, E_y, E_z]: Left Eye Vector $[E_x, E_y, E_z]$: Right Eye Vector

After scaling, data is used as input to the Support Vector Regression model for training and for prediction.

BLINK DETECTION

- Support Vector Machine model to predict blinks with eye aspect ratio (EAR) [2].
- Model trained with eyeblink8 dataset [3] and was tested with talkingface dataset [3].

Trained Model Predictions

CONCLUSION

 We built an eye-gaze and blink controlled system that works with only a webcam.

Right Click Left Click Scroll Down Scroll Up

REFERENCES

[1]Y. Cheung and Q. Peng, "Eye Gaze Tracking With a Web Camera in a Desktop Environment," in IEEE Transactions on Human-Machine Systems, vol. 45, no. 4, pp. 419-430, Aug. 2015.

[2]Soukupová, Tereza and Jan Cech. "Real-Time Eye Blink Detection using Facial Landmarks." (2016).

[3] Fogelton, A., n.d. Eyeblink - Research. [online] Blinkingmatters.com. Available at: <https://www.blinkingmatters.com/research> [Accessed 7 June] 2020].

[4]R. Valenti, N. Sebe, and T. Gevers, "Combining head pose and eye location information for gaze estimation," IEEE Trans. Image Process., vol. 21, no. 2, pp. 802–815, Feb. 2012.

[5]B. Amos, B. Ludwiczuk, M. Satyanarayanan, "Openface: A general-purpose face recognition library with mobile applications," CMU-CS-16-118, CMU School of Computer Science, Tech. Rep., 2016.

Scores	Precision	Recall	F1-Score	# Samples				
1	0.87	0.86	0.86	453				
0	0.99	0.99	0.99	4535				
Blink Test Scores								

 In screen coordinate prediction using the Support Vector Regression with OpenFace [5] is better than the polynomial regression function with only using eye vectors.

TECHNOLOGIES USED

Python C++ Cmake Vue.Js Electron.Js Github